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Abstract
Nonhydrodynamic behaviour of charge density autocorrelation functions
of molten salts is discussed. It is shown analytically within the three-
variable generalized collective modes approach that kinetic propagating charge
fluctuations make the contribution to the charge density autocorrelation
functions nonvanishing in the long-wavelength limit. A comparison with
molecular dynamics results is presented.

Microscopic dynamics of binary ionic liquids has for a long time been a focus of theoretical
and computational studies because of the strong interplay of density and charge fluctuations.
The strong Coulomb interaction is responsible for screening effects which appear in many
specific features of molten salts while not being observable for non-ionic mixtures. Also,
propagating charge excitations, often called optical-like modes, can be observed in charge–
charge time correlation functions obtained in molecular dynamics (MD) simulations. For
time correlation functions of binary ionic liquids, analytical results are known only in the
hydrodynamic limit [1, 2]. The hydrodynamic set of dynamical variables in the case of a
molten salt consists of four microscopic operators of total mass density nt(k, t), charge density
nq(k, t), longitudinal total mass current J L

t (k, t) and energy e(k, t):

A(hyd)(k, t) = {nt(k, t), nq (k, t), J L
t (k, t), e(k, t)}. (1)

These four operators correspond to fluctuations of conserved quantities and describe the
slowest dynamical processes in ionic melts. Indeed, charge current fluctuations reflect
processes on shorter timescales than hydrodynamic ones—processes that cannot be taken
into account correctly within the pure hydrodynamic picture. Therefore the only solution
corresponding to propagating modes in the hydrodynamic regime is longitudinal sound
waves. The hydrodynamic expression for charge–charge time correlation functions consists
of two relaxation contributions, coming from charge conductivity and thermal diffusivity, and
an oscillating symmetric contribution from sound excitations (the asymmetric contribution
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Figure 1. (a) Charge density autocorrelation functions for molten LiF at different wavenumbers.
(b) The mass concentration time autocorrelation functions for a liquid Lennard-Jones mixture
Fxx (k, t). The timescales in the simulations of LiF and KrAr were τLiF = 0.406 ps and
τKrAr = 4.598 ps, respectively.

corresponding to the non-Lorentzian shape of the dynamical structure factor Sqq(k, ω) is of
order k4) [2]:

Fqq(k, t)/Fqq (k, 0) = Aq
qq(k)e−dq(k)t + Ath

qq(k)e−dth(k)t + Bs
qq(k) cos[cskt]e−�k2 t , (2)

with Aq
qq(k) = 1 − aqk2, Ath

qq(k) = athk2 and Bs
qq(k) = bsk2 being the amplitudes of

the contributions from the charge conductivity, thermal diffusivity and sound excitations,
respectively; cs and � are the adiabatic speed of sound and sound attenuation coefficient.
The mode amplitudes satisfy to the zeroth-order sum rule: aq = ath +bs. As one may conclude
from (2), the hydrodynamic expression implies that for sufficiently small wavenumbers, when
Aq

qq(k) ≈ 1, the shape of Fqq(k, t) will be well described by a single-exponential function.
However, the MD results for the charge density autocorrelation function Fqq(k, t) disagree
with the hydrodynamic expression (2). In figure 1(a) we show MD-derived charge–charge
time correlation functions Fqq(k, t) for molten LiF at 1287 K with three wavenumbers.
The time correlation functions display strong oscillations with a tendency of increase of the
frequency towards smaller wavenumbers that is completely opposite to the tendency usually
observed for oscillations of the standard density–density time correlation functions due to
sound propagation [3]. This means that the hydrodynamic expression (2) cannot be used for
fitting to the MD data even in the long-wavelength region.
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In contrast to the molten salts one, the autocorrelation function for mass concentration
fluctuations, Fxx (k, t), in liquid non-ionic mixtures can easily be fitted to a hydrodynamic
two-exponential expression [3] in the region of small wavenumbers. In figure 1(b) the
functions Fxx (k, t) are shown for the case of the Lennard-Jones mixture KrAr at 116 K.
At this thermodynamic point, for the Lennard-Jones liquid mixture we obtained in previous
studies [4, 5] transverse and longitudinal propagating eigenmodes of optical phonon-like type.
One can easily see the striking difference in behaviour between Fqq(k, t) for molten salts and
Fxx (k, t) for liquid mixtures, although the dynamical variables of charge density nq(k, t) and
mass concentration density nx(k, t) describe similar kinds of fluctuations and are proportional,
via a constant [4]. Such a difference will be clarified here by means of the generalized collective
modes (GCM) [6, 7] approach. Another of our tasks is formulating a simplified model for
description of charge fluctuations and obtaining analytical expressions for mode contributions
to Fqq(k, t) in the long-wavelength limit.

Computer simulations for LiF at 1287 K were performed in the standard microcanonical
ensemble on two model systems of 1000 and 500 particles in cubic boxes subject to periodic
boundary conditions. Potentials in the Tosi–Fumi form for LiF were taken from [8]. The
long-range interaction was treated by the Ewald method. Fifteen wavenumbers were sampled
in MD simulations with the smallest value of kmin = 0.2711 Å−1. The main aim of the
MD simulations was to obtain the time evolution of all hydrodynamic and short-time extended
dynamical variables forming the basis set A(8)(k, t) for the study of collective dynamics within
the eight-variable GCM approach:

A(8)(k, t) = {nt(k, t), nq (k, t), J L
t (k, t), J L

q (k, t), ε(k, t), J̇ L
t (k, t), J̇ L

q (k, t), ε̇(k, t)}, (3)

where the extended dynamical variables were represented by the time derivatives of the
hydrodynamic variables. We estimated directly from MD the time correlation functions and
relevant static averages needed for evaluation of matrix elements of the 8 × 8 matrices of the
time correlation functions F(k, t) and their Laplace transforms F̃(k, z), and for calculation of
GCM replicas of the relevant time correlation functions. Eigenvalues and eigenvectors of the
generalized hydrodynamic matrix [7]

T(k) = F(k, t = 0)F̃−1(k, z = 0)

were calculated for each k-point sampled in molecular dynamics. Thus, in our approach
there were no fitting or free parameters. The set of eigenvalues zα(k) of the generalized
hydrodynamic matrix T(k) formed the spectrum of collective excitations. Any MD-derived
time correlation function of interest within the GCM approach has its GCM replica represented
as a sum over the mode contributions:

F (GCM)
i j (k, t) =

8∑
α=1

Gα
i j(k)e−zα(k)t , (4)

where in general complex amplitudes Gα
i j(k) were estimated from the eigenvectors associated

with the relevant eigenvalue zα(k) [7, 9].
In figure 2 the imaginary parts of two complex eigenvalues zα(k), which correspond to

propagating excitations, are shown. Another branch of propagating excitations, corresponding
to heat waves, was obtained in the region k > 0.8 Å−1; however, we will focus in this study on
the propagating density fluctuations. The dispersion curves in figure 2 shown by solid spline-
interpolated lines were estimated from the eight-variable model (3). The physical origin of
both branches can easily be established by a procedure proposed previously [4], which is based
on an additional GCM study using separated subsets of dynamical variables, namely

A(3i)(k, t) = {ni(k, t), J L
i (k, t), J̇ L

i (k, t)}, i = t, q, Li, F. (5)
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Figure 2. The dispersion of propagating collective excitations in molten LiF at 1287 K obtained in
the eight-variable model A(8) (spline-interpolated solid curves). Symbols show results obtained for
separate sets of three dynamical variables. The dashed line shows the linear dispersion for sound
excitations with c = 5320 m s−1.

From figure 2 one can conclude that in the region k < 1.4 Å−1 the high-frequency branch is
solely defined by propagating charge waves, while the low-frequency branch comes from the
fluctuations of total density and in the long-wavelength region shows an almost linear dispersion
law with the propagation speed c = 5320 m s−1. In this region the low- and high-frequency
branches correspond to acoustic and optical phonon-like excitations, respectively. Note that
the frequency ωopt(k) is a decreasing function of wavenumber in the long-wavelength region
in complete agreement with figure 1(a). For larger wavenumbers k > 1.4 Å−1 the ‘partial’
behaviour of both branches was established with low-and high-frequency branches describing
solely heavy (F) and light (Li) subsystems in the melt. In figure 2 the symbols corresponding
to the imaginary parts of complex eigenvalues obtained for four different separated three-
variable subsets of dynamical variables are shown in regions of wavenumbers where the best
correlation with the results of the eight-variable treatment was observed. This means that there
are two domains in the k-space, where the behaviour of each branch of collective excitations
can be well described in terms of ‘intrinsic collective’ t−q dynamical variables in the small
wavenumber region or ‘partial’ A−B dynamical variables in the region of intermediate and
large wavenumbers, because the t−x (or A−B) cross-correlation between the dynamical
variables in the corresponding domain of small (or large) wavenumbers is small.

The eight-variable approximation of the GCM approach allows us to reproduce fairly well
the MD-derived time correlation functions of LiF. In figure 3 we show the quality of two GCM
replicas for the smallest wavenumber charge density autocorrelation function, obtained with
the basis sets A(8) (dashed curve) and A(3q) (dotted curve). The GCM replica obtained from
the three-variable treatment of the charge subsystem (dotted curve) reproduces the oscillating
behaviour of Fqq(k, t), but contains oscillations that are less overdamped, because interaction
between charge fluctuations and other hydrodynamic processes was not taken into account for
the case of A(3q). In the case of the eight-variable treatment, the quality of the GCM replica
(dashed curve) is very good. Hence, the GCM approach, based on the hydrodynamic and more
short-time variables, is able to reproduce the behaviour of the MD-derived function Fqq(k, t),
in contrast to the solely hydrodynamic treatment. Another advantage of the GCM approach is
the possibility of separating mode contributions to the GCM replica according to (4). In order
to make the mode contributions from (4) more suitable for analysis, we represented them in
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Figure 3. The charge density autocorrelation function for molten LiF obtained in MD simulations
(solid curve) and its GCM replicas estimated from the eight-variable A(8) (dashed curve) and
three-variable A(3q) (dotted curve) models.

the form of mode strengths of equation (2) [2, 4]:

F (GCM)
qq (k, t)/Fqq (k, 0) =

Nrel∑
i

Ai
qq(k)e−di (k)t +

Npr∑
j

{B j
qq(k) cos[ω j(k)t]

+ C j
qq(k) sin[ω j (k)t]}e−� j (k)t , (6)

where in our case of eight eigenmodes for k < 0.8 Å−1 we had four (Nrel = 4) relaxation modes
zi (k) = di(k) and two pairs (Npr = 2) of propagating excitations z j (k) = � j (k) ± iω j (k). In
figure 4 the mode amplitudes from the two main relaxation processes of electric conductivity
Aq

qq(k), the thermal diffusivity Ath
qq(k) and the two symmetric contributions coming from

optical and acoustic branches of collective excitations are shown by symbol-connected lines for
the case of eight-variable treatment of collective dynamics in molten LiF. In fact, equation (6)
generalizes the hydrodynamic expression (2) to the case of additional nonhydrodynamic
collective excitations in the liquid. From figure 4 it follows that for k < 0.5 Å−1 neither
sound excitations nor the thermal diffusivity contribute to the charge–charge time correlation
functions Fqq(k, t); the shape of Fqq(k, t) is determined solely by the relaxation process of
the electric conductivity and propagating charge waves. Moreover, the contribution from the
nonhydrodynamic charge waves is almost four times as large as that from the hydrodynamic
relaxation process. This shows the striking difference between the molten salts with long-
range interaction and non-ionic liquid mixtures for which the mode strength of optical-like
excitations in Fxx (k, t) vanishes rapidly towards small wavenumbers (see [5]).

A simple three-variable analytical approach within the GCM method can explain the
behaviour of the mode strengths in figure 4. The 3 × 3 generalized hydrodynamic matrix T(k)

constructed using the basis set of dynamical variables A(3q) for the treatment of solely charge
fluctuations in molten salts (5) has the same structure as was obtained in [5] for the case of
mass concentration fluctuations in non-ionic solutions:

T(k) =
( 0 −ik 0

0 0 −1
−ik−1[ω2

JJ − ω2
qq ]τ−1

qq ω2
JJ [ω2

JJ(ω
2
qq)

−1 − 1]τ−1
qq

)
.

Note, however, that the input quantities, being expressed via the standard frequency moments
of the charge–charge dynamical structure factors 〈ωn

qq〉(k) [10], have, other than in liquid
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Figure 4. Mode amplitudes of different relaxation and propagation modes for the charge density
autocorrelation functions obtained for molten LiF in the eight-variable GCM model A(8) (symbols
connected by lines). The filled box and asterisk at k = 0 correspond to mode amplitudes from
propagating optical-like and charge relaxation excitations, respectively, as obtained from analytical
expressions (10) and (11).

mixtures, asymptotics when k → 0 due to the long-range interaction and electroneutrality
condition:

ω2
JJ(k) = 〈 J̇ L

q (−k) J̇ L
q (k)〉

〈J L
q (−k)J L

q (k)〉 , ω2
qq(k) = k2〈J L

q (−k)J L
q (k)〉

Sqq(k)
,

τqq(k) = 1

Sqq(k)

∫ ∞

0
Fqq(k, t) dt

tend to nonzero constants in the k → 0 limit. Three eigenvalues of matrix T(k) in the long-
wavelength limit are: a relaxation mode due to electric conductivity σ shifted by δ from its
hydrodynamic value due to the interaction with propagation modes:

d0 = 4πε

σ
+ δ ≡ 1

τ 0
qq

+ δ; (7)

and a pair of complex-conjugate roots �0 ± iω0 corresponding to propagating charge waves
with finite nonzero damping

�0 = ω2
JJ(0) − (2 + δτ 0

qq)ω
2
qq(0)

2τ 0
qqω

2
qq(0)

(8)

and frequency

ω0 =
√

ω2
JJ(0) − ω2

qq(0)

1 + δτ 0
qq

− �2
0 . (9)

Note that expressions (7)–(9) can be easily connected with the results derived for mass
concentration collective excitations in non-ionic binary mixtures [5] by setting δ → 0,
ω2

qq(k) ∼ k2, τ 0
qq ∼ k−2.

An interesting conclusion can be drawn by comparison of the three-variable GCM results
for the systems with long-range Coulomb interaction and non-ionic mixtures (or metallic
liquids with screened Coulomb potentials): the mode contribution from optical-like excitations
to the ‘charge–charge’ dynamical structure factor

Sqq(k, ω) = Sqq(k)

[
Aqq

dk

ω2 + d2
k

+
Bqq(k)�k + Cqq(k)(ω ± ωk)

(ω ± ωk)2 + �2
k

]
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does not vanish in the limit k → 0:

lim
k→0

Aqq(k) = 1 − 	 + O(k2), lim
k→0

Bqq(k) = 	 + O(k2) (10)

with

	 = ω2
qq(0) + d2

0 − 2d0�0

(d0 − �0)2 + ω2
0

. (11)

In figure 4 we have shown at k = 0 the results for mode amplitudes of propagating
charge waves (filled box) and the charge relaxation process (asterisk), which follow from our
expressions (10) and (11) within the three-variable treatment of charge fluctuations using the
basis set A(3q). Good agreement between the three-variable analytical approach and the eight-
variable numerical treatment supports our results. In the case of non-ionic mixtures or binary
liquids with screened Coulomb interaction (metallic alloys) the real eigenvalue corresponding
to concentration diffusion is a function of k2 in the hydrodynamic region; hence the numerator
in (11) vanishes as k2 (see [5]), i.e. 	 ∼ k2, and optical-like excitations in these systems are
not visible in scattering experiments for small wavenumbers.

In summary, we have shown that the hydrodynamic expression [1, 2] for charge density
autocorrelation functions cannot reproduce the shape of MD-derived functions. We solved
a three-variable model for charge fluctuations analytically and obtained the contribution to
Fqq(k, t), nonvanishing in the limit k → 0, coming from charge waves (optical phonon-
like excitations) which, despite being nonhydrodynamic, nevertheless contribute to the charge
density autocorrelation functions even in the long-wavelength limit. This feature is connected
with the long-range Coulomb interaction in molten salts. Our calculations based on a
generalized eight-variable treatment of the collective dynamics of molten LiF at 1287 K are in
good agreement with the simplified three-variable analytical approach to charge fluctuations
in molten salts.
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